22.12.202412.2024с 01.01.2024
Просмотры
Посетители
* - в среднем в день за текущий месяц
RuEn

рубрика "Вопросы теории и методологии"

Статистика онлайн-запросов в наукастинге миграции

Цапенко И.П., Юревич М.А.

Том 15, №1, 2022

Цапенко И.П., Юревич М.А. (2022). Статистика онлайн-запросов в наукастинге миграции // Экономические и социальные проблемы: факты, тенденции, прогноз. Т. 15. № 1. С. 74–89. DOI: 10.15838/esc.2022.1.79.4

DOI: 10.15838/esc.2022.1.79.4

  1. Лифшиц М.Л. (2016). Прогнозирование мировой миграционной ситуации на основе анализа нетто-миграции в странах мира // Прикладная эконометрика. Т. 41. С. 96–122.
  2. Малышева Д.Б. (2017). Миграционные процессы в странах Центральной Азии // Постсоветские государства: 25 лет независимого развития / отв. ред. А.Б. Крылов. Т. 1. М.: ИМЭМО РАН. С. 160–171.
  3. Ткаченко А.А., Гиноян А.Б. (2018). Оценка миграционного потенциала стран СНГ на основе модели международной миграции // Вопросы статистики. № 25 (11). С. 46–56.
  4. Чудиновских О.С., Степанова А.В. (2020). О качестве федерального статистического наблюдения за миграционными процессами // Демографическое обозрение. Т. 7. № 1. С. 54–82.
  5. Юревич М.А., Екимова Н.А., Балацкий Е.В. (2020). Цифровая трансформация экономической науки // Информационное общество. № 2. C. 39–47.
  6. Юревич М.А. (2021). Инфляционные ожидания и инфляция: наукастинг и прогнозирование // Journal of Economic Regulation. Т. 12. № 2. С. 22–35.
  7. Acostamadiedo E. et al. (2020). Assessing Immigration Scenarios for the European Union in 2030 – Relevant, Realistic and Reliable? Geneva: IOM and e Hague: NIDI.
  8. Albertinelli A. et al. (2020). Forecasting asylum-related migration to the European Union, and bridging the gap between evidence and policy. Migration Policy Practice, X(4), 35–41.
  9. Beduschi A. (2018). The big data of international migration: Opportunities and challenges for states under international human rights law. Georgetown Journal of International Law, 49, 982–1017.
  10. Bengtsson L. et al. (2011). Improved response to disasters and outbreaks by tracking population movements with mobile phone network data: A postearthquake geospatial study in Haiti. PLoS Med, 8(8), e1001083.
  11. Bijak J. (2016). Migration forecasting: Beyond the limits of uncertainty. IOM’s GMDAC Data Briefing Series, 6, 7. Available at: gmdac.iom.int/gmdac-databriefing-migration-forecasting-beyondlimits-uncertainty
  12. Bijak J., Czaika M. (2020). Assessing uncertain migration futures: A typology of the unknown. QuantMig Project Deliverable D1.1. University of Southampton and Danube University Krems. Available at https://www.quantmig.eu/res/files/QuantMig%20D1.1%20Uncertain%20Migration%20Futures%20V1.1%2030Jun2020.pdf
  13. Bijak J., Czaika M. (2020). Black swans and grey rhinos: Migration policy under uncertainty. Migration Policy Practice, 2020, X(4), 14–18. Available at: https://publications.iom.int/books/migration-policy-practice-vol-x-number-4-september-december-2020
  14. Blazquez D., Domenech J. (2018). Big data sources and methods for social and economic analyses. Technological Forecasting and Social Change, 130, 99–113.
  15. Bohme M. et al. (2020). Searching for a better life: Predicting international migration with online search keywords. Journal of Development Economics, 142, 14. DOI:10.1016/j.jdeveco.2019.04.002
  16. Carammia M., Dumont J. (2018) Can we anticipate future migration flows? OECD/EASO Migration Policy Debate, 16, 9.
  17. Carling J. (2017). How does migration arise? In: M. McAuliffe and M. Klein Solomon (Conveners) Ideas to Inform International Cooperation on Safe, Orderly and Regular Migration. Geneva: IOM, 19–26.
  18. Choi H., Varian H. (2012). Predicting the present with Google trends. Predicting. The Economic Record, 88 (June), 2–9. DOI: 10.1111/j.1475-4932.2012.00809.x
  19. Connor P. (2017). The Digital Footprint of Europe’s Refugees. Pew Research Center. Available at: https://www.pewresearch.org/global/wp-content/uploads/sites/2/2017/06/Pew-Research-Center_Digital-Footprint-of-Europes-Refugees_Full-Report_06.08.2017.pdf
  20. Hawelka B. et al. (2014). Geo-located Twitter was proxy for global mobility patterns. Cartography and Geographic Information Science, 41(3), 260–271.
  21. Rango M. (2015). How big data can help migrants, World Economic Forum, 2 (October 5, 2015), Available at: https://www.weforum.org/agenda/2015/10/how-big-data-can-help-migrants/
  22. Sîrbu A. et al. (2021). Human migration: The big data perspective. International Journal of Data Science and Analytics, 11, 341–360. DOI: 10.1007/s41060-020-00213-5
  23. Sohst R., et al. (2020). The Future of Migration to Europe: A Systematic Review of the Literature on Migration Scenarios and Forecasts. Geneva: IOM and Hague: NIDI.
  24. Sohst R., Tjaden J. (2020). Forecasting migration: A policy guide to common approaches and models. Migration Policy Practice, 4, 8–13.
  25. Spyratos S. et al. (2019). Quantifying international human mobility patterns using Facebook Network data. PLoS One, 14(10), e0224134. https://doi.org/10.1371/journal.pone.0224134
  26. Stewart I. et al. (2019). Rock, rap, or reggaeton? Assessing mexican immigrants’ cultural assimilation using Facebook data. In: WWW ‘19. NY: Association for Computing Machinery, 3258–3264. DOI: 10.1145/3308558.3313409
  27. Struijs P. et al. (2014). Official statistics and big data. Big Data & Society, April–June, 1–6. DOI: 10.1177/2053951714538417
  28. Szczepanikova A., Van Criekinge T. (2018). The Future of Migration in the European Union: Future Scenarios and Tools to Stimulate Forward-Looking Discussions. Luxembourg: Publications Office of the European Union. DOI: 10.2760/000622
  29. Tjaden J. et al. (2021). Tale of high expectations, promising results and a long road ahead. Available at: https://medium.com/@UNmigration/using-big-data-to-forecast-migration-8c8e64703559
  30. Tjaden J., Auer D., Laczko F. (2019). Linking Migration Intentions with flows: Evidence and potential use. International Migration, 57(1), 36–57. DOI: 10.1111/imig.12502
  31. Wanner P. (2021). How well can we estimate immigration trends using Google data? Quality & Quantity, 55, 1181–1202. DOI: 10.1007/s11135-020-01047-w
  32. Wilson T. (2017). Can international migration forecasting be improved? The case of Australia. Migration Letters, 14(2), 285–299. DOI: 10.33182/ml.v14i2.333
  33. Wladyka D. (2017). Queries to google search as predictors of migration flows from Latin America to Spain. Journal of Population and Social Studies, 2017, 25(4), 312–327. DOI: 10.25133/JPSSv25n4.002
  34. Zagheni E., Weber I., Gummadi K. (2017). Leveraging Facebook’s advertising platform to monitor stocks of migrants. Population and Development Review, 43, 721–734. https://doi.org/10.1111/padr.12102
  35. Zagheni E., Weber I. (2012). You are where you e-mail: Using e-mail data to estimate international migration rates. In: WebSci ‘12: Proceedings of the 4th Annual ACM Web Science Conference. NY: Association for Computing Machinery, 348–351. DOI: 10.1145/2380718.2380764

Полная версия статьи