УДК 338.1(470.2) ББК 65.050.11(2Рос-12) © Ласточкина М.А., Шабунова А.А.

Возможности и ограничения модернизационного развития регионов Северо-Западного федерального округа*

Модернизация в масштабе страны невозможна без модернизации ее регионов, именно в них она реализуется. А при разработке планов модернизации страны (регионов) вполне закономерным представляется их сопоставление по ключевым параметрам модернизации с развитыми странами, странами-лидерами инновационного развития. Вследствие существенных территориальных различий в развитии России существует необходимость дифференциации подхода к определению уровня модернизации регионов. Требуется научно обоснованная стратегия конкретно для каждого федерального округа и региона (поддержанная населением и осуществляемая органами управления), которая учитывала бы проблемы, препятствующие модернизации данной территории.

Модернизация регионов, социально-экономическое развитие, уровни модернизации, технологический уклад, НИОКР.

Мария Александровна ЛАСТОЧКИНА кандидат экономических наук, старший научный сотрудник ИСЭРТ РАН mashkop@mail.ru

Александра Анатольевна ШАБУНОВА доктор экономических наук, зам. директора по научной работе, зав. отделом ИСЭРТ РАН aas@vscc.ac.ru

Модернизация приобрела масштаб всемирного процесса и представляет собой объективно сложившийся глобальный вызов каждой стране. В последнее время в России активизировалась работа по осмыслению параметров этого вызова и формированию стратегии действий, которая позволит обеспечить безопасность и устойчивость развития страны. О модернизации много говорилось и в политических выступлениях, и в периодической печати, и в научных исследованиях; лидерами страны ставились задачи, определялись ориентиры дальнейшего развития.

^{*} Работа выполнена при поддержке гранта РФФИ, проект №13-06-00898.

С целью содействия устойчивому технологическому развитию национальной экономики России, совершенствованию государственного управления программами модернизации в 2009 г. при Президенте РФ была создана Комиссия по модернизации и технологическому развитию экономики России [12], впоследствии переименованная в Совет [13]. Данные шаги ориентированы не только на модернизацию экономики и инновационное развитие, но и на совершенствование государственного управления в данной сфере, а это значит – улучшение инвестиционного климата в стране, налаживание частногосударственного партнерства. Однако до сих пор так и не произошло формирования благоприятной деловой обстановки, активизации инвестиционной политики государства, научно-технического и экономического прогресса.

Россия в мировом пространстве

Рассматривая модернизацию России с точки зрения перспектив долгосрочного развития экономики и общества, следует отметить, что это прежде всего процесс преобразования страны в инновационную державу, продукция которой конкурентоспособна на международных рынках. Причем каждый новый этап модернизации основан на технологических, организационных и социальных инновациях, на сменах технологических укладов (ТУ). Как считает С.Ю. Глазьев, шестой уклад, приходящий на смену пятому, открывает для России возможности технологического рывка и опережающего роста на гребне новой длинной волны экономического роста [4]. При этом основополагающими факторами служат своевременное создание заделов для формирования ядра шестого ТУ и опережающая модернизация его стержневых отраслей: электронной промышленности, программного обеспечения, информационных технологий, нанотехнологий, генной инженерии.

Однако, как показывает анализ экономического климата, существует очень большая диспропорция между Россией и развитыми странами, одной из причин которой является ее технологическая многоукладность, унаследованная со времен СССР. Развитие четвертого ТУ происходило в СССР с запаздыванием на 30 лет по сравнению с глобальной траекторией топливно-энергетических ресурсов (ТЭР) [5].

Кроме того, в России в годы политических и социальных преобразований мало внимания было уделено пятому технологическому укладу, связанному с телекоммуникациями, микроэлектроникой, малотоннажной химией. Так, например, по сравнению с другими странами Россия значительно отстает по количеству и качеству компьютеров. Доля нашей страны по количеству суперкомпьютеров в 2013 г. составляла 1,6%, что в 4 раза меньше, чем в Японии, и в 31 раз меньше, чем в США (табл. 1). Хотя в РФ и отмечается положительный рост внедрения компьютерных технологий, однако его темпы недостаточны для достижения доминирующих позиций. На мировое лидерство претендует Китай, который постоянно наращивает темпы роста и за последние 13 лет поднялся с 15 места на 2-е. Россия же в 2013 г. занимает 9 место в рейтинге странобладательниц суперкомпьютеров, хотя значительно отстает по производительности – в 25 раз ниже, чем в Китае, и в 44 раза — чем в США.

В России низкими темпами развивается и коммуникационная составляющая научно-технического прогресса: число патентов в области информационных и коммуникационных технологий (ИКТ) не только в 75 раз ниже, чем у лидирующей тройки (Япония, США, Евросоюз), но и в период с 2006 по 2009 г. снизилось еще на 11%.

NI.	10 лиди-	1997		2000		2004		20	07	2013**		
№ п/п	рующих стран	Кол-во, шт.	TFlops*	Кол-во, шт.	TFlops	Кол-во, шт.	TFlops	Кол-во, шт.	TFlops	Кол-во, шт.	TFlops	
1.	США	265	10	258	57	262	782	280	4436	252	152701	
2.	Китай	н/д	н/д	2	0,135	14	43	13	175	66	85176	
3.	Япония	87	0,381	62	12	35	124	23	393	30	24501	
4.	Велико- британия	24	0,607	28	6	34	108	44	526	29	11032	
5.	Франция	19	0,677	20	3	19	39	13	198	23	10881	
6.	Германия	45	0,187	65	11	37	69	23	317	19	13521	
7.	Индия	н/д	н/д	н/д	н/д	6*	10*	8*	87*	11	3518	
8.	Канада	7	0,124	9	0,941	7*	23	10*	80	9	2288	
9.	Россия	1*	0,024*	н/д	н/д	2*	2*	5*	44*	8	3475	
10.	Швеция	8	0,215	5	0,580	3	6	10	88	7	1534	

Таблица 1. Крупнейшие обладатели суперкомпьютеров (500 самых мощных общественно известных компьютерных систем мира) [3]

TFlops (*Trillion FLoating point OPeration* TFlops = 10¹² Flops Терафлопс) – пиковая производительность – теоретический предел производительности (выражаемый через операции с плавающей точкой) для данных процессоров.

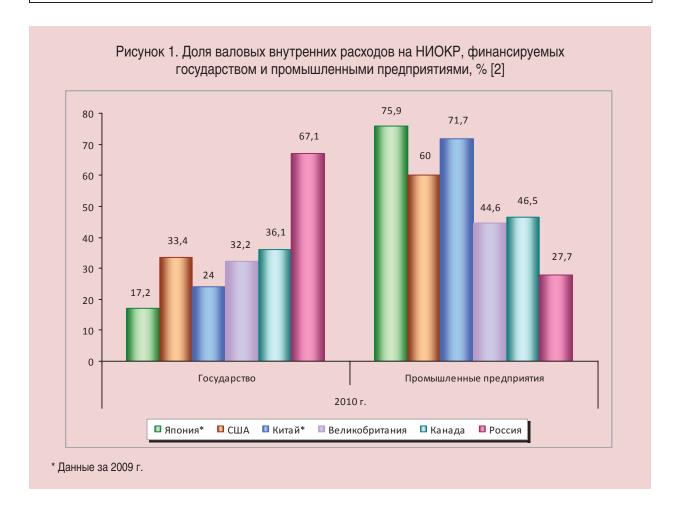
Таблица 2. Число патентов в области ИКТ – заявки, поданные в соответствии с Договором о патентной кооперации [2]

Страна	2000 г.	2005 г.	2006 г.	2007 г.	2008 г.	2009 г.	2010 г.
Япония	4761	11764	11986	11997	11001	12000	15189
США	18825	19514	20867	19238	15743	14714	15001
EC (27)	12524	13233	13723	13939	13103	12232	11942
Китай	231	1936	2671	3378	3207	4589	5932
Германия	3960	3994	4038	4204	3896	3780	3817
Франция	1498	2065	1890	1995	2022	1956	1995
Великобритания	2171	2063	2238	2149	1922	1641	1561
Канада	924	1139	1166	1310	1042	982	1046
Швеция	1216	850	1085	1229	1180	1029	941
Россия	179	210	211	191	173	187	203

Все больше расширяют сферы своего доминирования азиатские страны. Япония в 2010 г. догнала беспрецедентного лидера — США; судя по темпам роста, в ближайшие 10 лет это намерен сделать и Китай (табл. 2).

Анализ расходов на научно-исследовательские и опытно-конструкторские работы (НИОКР) на душу населения по паритету покупательной способности (ППС) показал, что Россия в 5–6 раз отстает от Швеции, Японии, Германии, в 2,7 раза — от Евросоюза (табл. 3). И хотя за исследуемое десятилетие в нашей стране

произошло увеличение указанных расходов почти в 3 раза — с 71,6 до 235,9 доллара на душу населения, все же темп роста ниже, чем в Китае (за 9 лет расходы увеличились более чем в 6 раз), который также имеет низкое значение этого показателя.


В развитых странах Организации экономического сотрудничества и развития (ОЭСР), а также Китае (рис. 1) доля расходов частного сектора на НИОКР в 3—5 раз выше доли государственных расходов. В России же, наоборот, данное соотношение составляет 1 к 2,5, что идет вразрез с мировой тенденцией.

^{*} В данном году страна не входила в десятку лидеров.

^{**} Отсортировано по количеству в 2013 г.

Таблица 3. Валовые внутренние расходы на НИОКР на душу	/
населения в текущих ценах по ППС, долларов [2]	

Страна	2000 г.	2005 г.	2006 г.	2007 г.	2008 г.	2009 г.	2010 г.*
Швеция	_	1313,6	1305,5	1463,8	1340,1	1331,4	1399,7
США	949,4	1182,4	1259,8	1334,0	1318,4	1319,2	1330,6
Япония	777,4	1082,7	1156,0	1164,7	1076,4	1100,7	-
Германия	636,9	851,2	899,8	998,2	1005,9	1055,3	1121,8
Франция	542,8	661,6	690,0	725,8	767,4	770,3	796,2
Канада	543,9	739,1	753	747,7	732,7	722,3	703,5
EC (27)	381,7	512,5	544,2	588,3	595,2	607,8	632,9
Великобритания	473,1	610,4	635,1	641,7	634,6	634,5	631,7
Россия	71,6	159,8	185,9	210,6	234,7	229,5	235,9
Китай	21,5	65,9	77,4	90,9	115,4	132,9	_

При этом государство финансирует свыше половины НИОКР, выполняемых частным сектором. Для стран ОЭСР этот показатель составляет всего 7%, для Китая—менее 5% [11]. Главная причина такого положения РФ заключается в отсутствии

у частного капитала стимулов к инвестированию в научные исследования и разработки. Доля бюджетного финансирования за десятилетие не только не сократилась, а, напротив, увеличилась — с 54,8% в 2000 г. до 67,1% в 2010 г.

Это свидетельствует о том, что бизнес не ощущает нужды в технологических инновациях и не имеет определяющего значения в отборе и внедрении новых технологий в производство, являющихся ядром инновационной политики. То есть отсутствует здоровая конкурентная среда, в которой увеличение объема продаж ведет к росту финансирования осуществляемых научных исследований и разработок.

Методологические аспекты оценки уровня модернизации территорий

В свете рассмотренных выше аспектов особую значимость приобретают вопросы, связанные с инновационным и модернизационным развитием России и каждого ее региона. Достаточно успешные попытки подъема экономики и повышения своего престижа на мировой арене демонстрирует в последние годы Китай, который любой ценой пытается выйти на ведущие мировые рынки, совершая переход от аграрноиндустриального общества к информационному, основанному на знаниях. В связи с этим китайскими учеными проводится немало аналитических и прогнозных работ.

В начале XXI века Китайская академия наук (КАН) особое внимание уделяет вопросам модернизации в мире и собственной стране (Хэ Чуаньци [14]). Центром исследований модернизации (ЦИМ) КАН предложен комплексный набор количественных ориентиров развития, отвечающих мировому уровню модернизации экономики 20-ти наиболее развитых стран. С 2001 г. ЦИМ КАН ежегодно рассчитывает индексы и фазы двух стадий модернизации (первичная и вторичная) и их интегрированный индекс для 131 страны (включая Россию), осуществляя также их ранжирование и прогнозирование основных ориентиров эволюции модернизации в мире. Отметим, что имеются основания для применения методики ЦИМ КАН к измерению состояния и динамики процессов модернизации в регионах России.

Основной вклад в адаптацию методики китайских ученых к измерению этих процессов в российских регионах внес Центр изучения социокультурных изменений Института философии (ЦИСИ ИФ) РАН (Н.И. Лапин [7]), дополнив типологию качественных состояний модернизированности регионов типами модернизированности, которые включают измерения и оценки как уровня, так и фазы первичной и вторичной стадий модернизации.

Модель количественной оценки первичной модернизации (ПМ) была разработана с учетом показателей, предложенных А. Инкелесом и Д. Смитом [1]. В ней учитываются 10 индикаторов, характеризующих три области жизни индустриального общества: экономическую, социальную, уровень знаний. В качестве стандарта были приняты средние значения индикаторов, которые были достигнуты к 1960 г. в 19 наиболее развитых индустриальных странах мира. Отношение фактического значения показателя к стандартному в том или ином году принимается за значение оценочного индикатора. Модель оценки вторичной модернизации (ВМ) относится к информационному обществу или обществу, основанному на знаниях. Процесс ВМ начался около 30 лет назад, но его законы и характерные черты все еще формируются. Оценка ВМ включает в себя четыре группы индикаторов (инновации в знаниях, передача знаний, качество жизни и качество экономики), включающие 16 отдельных показателей. Интегрированная модернизация (ИМ) понимается как совокупность состояния двух указанных ранее стадий, фиксирующая характер их взаимной координации в той или иной стране (регионе) и отличие от передового мирового уровня. В модели оценки индекса ИМ учитываются 12 индикаторов: 10 из них используются в моделях ПМ и ВМ, а 2 введены дополнительно *(табл. 4)*.

Таблица 4. Набор индикаторов, используемых при расчете индексов и фаз ПМ, ВМ и ИМ

		Принадлежность к и					инд	индексам и фазам				
No	Индикаторы				ИМ			ПМ-	BM-			
п/п	тапаторы	ПМ	BM						фаза	фаза		
1.	Родорой рогионовиний проликт (РИП) на лини населения в		KI	KT	LQ	EQ	EI	SI	KI	PFM	PSM	
1.	Валовой региональный продукт (ВНП) на душу населения, в долл. США	+				+	+					
2.	Доля лиц, занятых в сельском хозяйстве, к общему числу занятых, в % *	+								+		
3.	Доля добавленной стоимости в сельском хозяйстве по отношению к $BB\Pi^{\star}$	+								+		
4.	Доля добавленной стоимости в сфере услуг по отношению к ВВП, в $\%$	+					+					
5.	Доля городского населения во всем населении, в %	+			+			+				
6.	Число врачей на 1000 человек	+			+			+				
7.	Младенческая смертность (в возрасте до 1 года), на 1000 родившихся *	+			+							
8.	Ожидаемая продолжительность жизни, лет	+			+			+				
9.	Уровень грамотности среди взрослых, в %	+										
10.	Доля студентов, обучающихся в вузах, среди населения от 18 до 22-х лет, в $\%$	+		+					+			
11.	Доля затрат на НИОКР в ВРП (ВВП), %		+						+		+	
12.	Число ученых и инженеров на 10 тыс. чел.		+									
13.	Число жителей, подавших патентные заявки, на 1 млн. человек		+						+			
14.	Доля обучающихся в средних учебных заведениях среди на- селения 12-17 лет, в %			+								
15.	Число телевизоров на 100 домохозяйств			+								
16.	Число персонал. компьютеров на 100 домохозяйств			+					+			
17.	Энергетическая эффективность: ВВП (ВРП) на душу / стоимость потребления энергии на душу, раз				+							
18.	Валовой региональный продукт (ВНП) на душу населения по ППС, в долл. США					+	+					
19	Доля добавленной стоимости материальной сферы (с\x и промышленность) в ВРП (ВВП)*, в %					+					+	
20.	Доля занятых в материальной сфере в общей занятости*, в %					+					+	
21.	Доля занятых в сфере услуг в общей занятости, в %						+					
22.	Экологическая эффективность: ВВП на душу / расходы энергии на душу (цена в долл. США), в %							+				
23.	Отношение добавленной стоимости в сельском хозяйстве к добавленной стоимости в промышленности, раз									+		
24.	Отношение занятости в сельском хозяйстве к занятости в промышленности									+		
25.	Доля инновационных товаров, работ, услуг в общем объеме отгруженной продукции, в $\%$										+	

Обозначения: + - показатель участвует в расчете данного индекса.

Субиндексы ВМ и ИМ: KI — инновации в знаниях, KT — трансляции знаний, LQ — качества жизни, EQ — качества экономики, EI — экономический индекс, SI — социальный индекс, KI — индекс знаний.

Источник: таблица разработана авторами на основе [7, 14].

^{*} Обратный индикатор.

Уровень модернизации федеральных округов России

Согласно расчетам (проведены авторами в специально разработанной ИСЭРТ РАН и запатентованной Информационноаналитической системе «Модернизация») оценка индексов первичной модернизации показывает положительную динамику роста индекса на протяжении всего анализируемого периода (2000–2010 гг.) в 4-х федеральных округах РФ: Центральном, Северо-Западном, Дальневосточном и Уральском. Для Приволжского, Сибирского, Южного, Северо-Кавказского федеральных округов 2009—2010 годы оказались временем незначительного снижения ПМ-индекса (с 0,2 до 1,7 п.п.), причиной этого, очевидно, послужил финансово-экономический кризис, который характеризовался спадом социально-экономических показателей. По истечении 10 лет разрывы в уровне первичной модернизации между округами стабильно остаются на уровне 6 п.п., а общероссийский уровень превышается лишь Центральным ФО. К 2008 г. все рассматриваемые территории достигли уровня первичной модернизации выше среднего (индекс в интервале от 91 до 99,9), следовательно, до полной реализации первичной модернизации федеральным округам недостает от 6,4 до 0,1 п.п. Как показывают результаты проведенного анализа, осуществлению первичной модернизации в

большинстве федеральных округов препятствует недостаточная продолжительность жизни населения.

Анализ второго периода региональной модернизации, более наукоемкого, включающего в себя экологизацию и глобализацию, выявил неготовность большей части территорий России соответствовать мировым стандартам. В 2000-2010 гг. российский тренд индексов ВМ вырос с 61 до 72, тем самым был преодолен рубеж срединного уровня и Российская Федерация «поравнялась» с Чехией. Пролонгация данных показывает, что к 2020 г. наша страна может войти в группу развитых, в которой индекс ВМ находится в интервале от 81 до 120. Однако одновременно с этим повышаются и применяемые стандарты, так как ежегодно растут индикативные социально-экономические показатели развитых стран.

Тем самым, с учётом конкуренции стран за преодоление порога темп роста в России может оказаться недостаточным для модернизационного прорыва, поскольку региональные разрывы между индексами ВМ более широки, чем в индексах ПМ. В 2010 г. лидерами (так же, как и по индексу ПМ) являлись города Москва и Санкт-Петербург, список дополнили Московская, Томская области и Центральный ФО. Значительная часть регионов имели средний уровень ВМ, причем половина из них занимали коридор ниже срединного уровня (табл. 5).

	Lluo					
Уровень	Низ- кий	Ниже срединного	Срединный	Выше срединного	Высокий	
Индекс	30–50	51–60	61–70	71–80	Более 81	
Федеральный округ	-	Южный (59) Северо-Кавказский (54)	Уральский (66) Приволжский (64) Сибирский (63) Дальневосточный (62)	Северо-Западный (79)	Центральный (84)	
Число регионов РФ	3	38	30	9	4	

Таблица 5. Иерархия уровней вторичной модернизации регионов России (2010 г.)

Источник: составлено авторами с использованием Информационно-аналитической системы мониторинга параметров модернизации регионов России (ИС «Модернизация», патент №2012661285, 2012 г.), в соответствии с методологическими разработками ЦИСИ Института философии РАН.

Таким образом, процесс региональной модернизации в России неравномерен и асимметричен: зачастую между соседними территориями имеется значительная разница в индексе ВМ. Например, Санкт-Петербург опережает Ленинградскую область на 29 пунктов, Москва опережает Московскую область на 23 пункта. Казалось бы, разница велика в обоих случаях, однако Ленинградская область занимает лишь 33 место в общероссийском рейтинге и соответствует только срединному уровню ВМ (индекс ВМ равен 63), тогда как Московская область — 3 место (индекс ВМ равен 84). В первом случае предстоит приложить немалые усилия, чтобы повысить уровень ВМ, а именно:

- увеличить долю затрат на научноисследовательские и опытно-конструкторские работы в ВРП (в 2–2,5 раза);
- увеличить число ученых и инженеров, полностью занятых в НИОКР, на 10 000 человек населения (в 2–2,5 раза);
- увеличить число жителей страны, подавших патентные заявки, на 1 млн. человек населения (в 6—8 раз);
- увеличить число персональных компьютеров на 100 домохозяйств (в 2 раза);
- увеличить ВРП на душу населения (в 4—5 раз);
- увеличить ВРП на душу населения по паритету покупательной способности (в 2,5—3 раза);
- уменьшить долю добавленной стоимости материальной сферы (в 2 раза);
- уменьшить долю лиц, занятых в материальной сфере (в 1,5–2 раза).

Так как интегрированная модернизация представляет координированное взаимодействие обеих стадий, то рейтингование регионов России во многом соответствует их распределению в двух предыдущих случаях. В лидеры снова вышли Центральный и Северо-Западный федеральные округа,

достигнув среднего уровня (интервал от 64 до 77) к 2005 и 2008 годам соответственно. Начиная с 2009 г. данному стандарту стала отвечать Россия; остальные 6 федеральных округов (Уральский, Дальневосточный, Приволжский, Сибирский, Южный, Северо-Кавказский) соответствуют уровню ниже среднего (интервал от 48 до 63).

Определение в России фазы первичной модернизации обнаруживает, что за 10 лет ее уровень повысился на 0,5, и она перешла из фазы зрелости в переходную к вторичной модернизации. Еще три федеральных округа имеют схожие со страной значения индекса ВМ, однако ВМ-фазы их существенно дифференцированы: от 1,5 в Центральном ФО до 0 в Уральском ФО. По России в целом и Северо-Западному ФО значения равны 1, этому соответствует фаза начала. Однако не все федеральные округа осуществили такой скачок, большая часть из них (Дальневосточный, Приволжский, Сибирский, Южный, Северо-Кавказский) находятся в фазе зрелости, т.е. первичная модернизация еще не вошла в фазу, переходную к вторичной. Ограничением, которое не позволяет вступить в нее, служит относительно высокая занятость в сельском хозяйстве, не отвечающая стандартам индустриальных стран начала 1960-х годов.

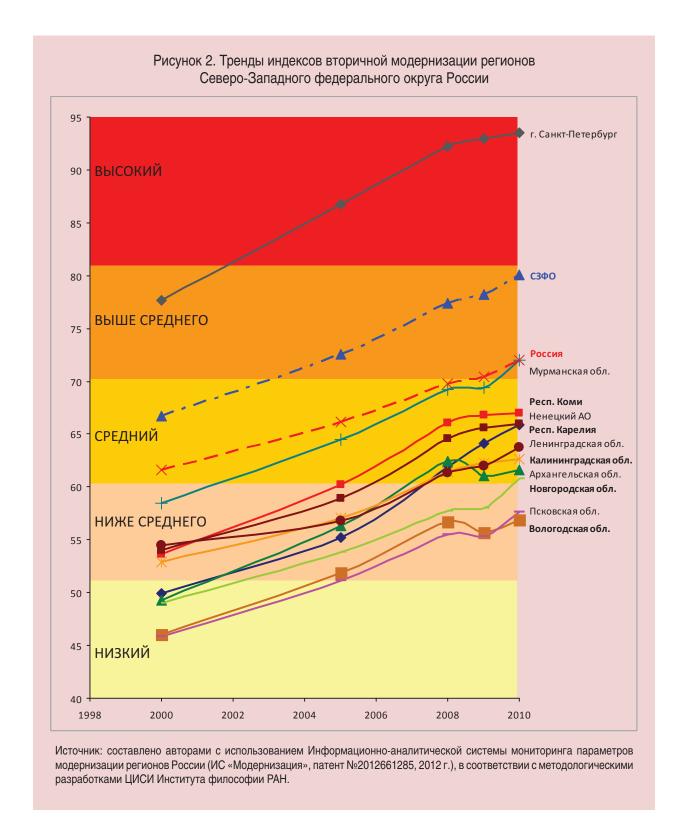
Уровень модернизации в регионах Северо-Западного федерального округа

В целях получения более детальной картины модернизации регионов внутри федерального округа обратимся к изучению и сравнению уровня первичной, вторичной и интегрированной модернизации в субъектах Северо-Западного федерального округа. Индекс первичной модернизации СЗФО за 10 лет увеличился почти на 8% и в 2010 г. составил 99,7, что соответствует второму месту в общем рейтинге федеральных округов России (первое место занимает Центральный ФО).

		•				•
Показатель		Фа	Прогноз			
Показатель	2000 г.	2005 г.	2008 г.	2010 г.	2015 г.	2020 г.
Число регионов, осуществивших ПМ менее чем на 99%	11	11	6	7	4	3
Число регионов, осуществивших ПМ на 99%	_	-	4	3	5	5
Число рогионов, осуществивших ПМ на 100%			-1	1	2	3

Таблица 6. Перспективы модернизации регионов Северо-Западного федерального округа

Источник: расчеты авторов с использованием Информационно-аналитической системы мониторинга параметров модернизации регионов России (ИС «Модернизация», патент №2012661285, 2012 г.), в соответствии с методологическими разработками ЦИСИ Института философии РАН.


В целом по округу 9 из 10 учитываемых индикаторов ПМ были реализованы на 100%. Полной реализации (достижение 100%) препятствует недостаточно высокая ожидаемая продолжительность жизни (ОПЖ) населения (в основном из-за высокой смертности мужчин трудоспособного возраста). Подобная ситуация наблюдается в Мурманской области. В Вологодской, Калининградской, Новгородской, Псковской областях и Республике Карелия сдерживающим модернизацию фактором служит не только ОПЖ, но и низкие доходы на душу населения. К этим факторам в Архангельской, Ленинградской областях, Ненецком АО и Республике Коми относятся низкая ОПЖ и высокая доля добавленной стоимости в сфере услуг по отношению к ВВП (ниже 45% по стандартам ПМ). Избавление от этих «тормозов модернизации», даже при больших усилиях, вероятно не ранее 2020 г. Единственная территория, которая уже к 2008 г. достигла полной реализации ПМ, — это Санкт-Петербург.

В 2010 г. по сравнению с 2009 г. у восьми субъектов округа произошло снижение индексов ПМ на 0,1—0,7 единицы. Следует отметить, что в ряде регионов (Псковская область, Республика Карелия, Ненецкий автономный округ) при низких значениях индекса и темпы его роста являются невысокими. Так, например, у региона-аутсайдера — Ненецкого автономного округа — индекс ПМ равен 92, а прирост за 10 лет составил всего 1 пункт. При сохранении существующих тенденций скорое завер-

шение данного этапа модернизации проблематично, что показывают прогнозные расчеты (по инерционному сценарию; maбл. 6)

Продолжая анализировать уровни вторичной модернизации регионов СЗФО, отметим, что еще 5 территорий соответствуют срединному уровню ВМ; один регион (Мурманская область) находится выше срединного уровня; Санкт-Петербург имеет высокий уровень, а в группу с уровнем ниже срединного входят 3 региона (рис. 2).

Очевидна позитивная динамика уровня ВМ субъектов СЗФО в период с 2000 по 2010 г. – на всех территориях он повысился. В итоге пять регионов (Республика Карелия, Архангельская, Новгородская, Вологодская, Псковская области) вышли из группы регионов с низким уровнем и поднялись сначала до уровня ниже срединного (2005 г.), а в 2010 г. в трех из них (Республика Карелия, Архангельская, Новгородская области) уровень ВМ стал соответствовать срединному. За 10 лет из группы с уровнем ниже срединного 2 региона (Ленинградская область, Республика Коми) перешли в группу со срединным уровнем, а один регион (Мурманская область) — в группу с уровнем выше срединного. Лишь в Калининградской области, хотя и имеющей положительную динамику, из года в год соответствует уровню ниже срединного. Значимо выделяется среди всех территорий федерального округа Санкт-Петербург, поскольку ни один регион СЗФО не смог достигнуть планки,

которую имел город в 2000 г. Это обеспечивается за счет высокого индекса инноваций в знаниях, который в 3-12 раз превышает показатели других регионов.

Принципиальное значение имеют фазы модернизации (первичной и вторичной). По правилам используемой методики определение фазы ВМ возможно только при

модернизации регионов России (ИС «Модернизация», патент №2012661285, 2012 г.), в соответствии с методологическими

условии вхождения территории в переходную фазу ПМ. В 2000 г. СЗФО в целом и еще 5 субъектов соответствовали фазе перехода к ВМ, однако ежегодно происходило сокращение их числа и к 2010 г. остались 3 региона (рис. 3). Подобные тенденции обусловлены увеличением отношения добавленной стоимости в сельском хозяйстве к ВРП, которое должно быть меньше 5%, а также увеличением доли занятости в сельском хозяйстве (примерно на 10%). Таким образом, только Республика Коми, Архангельская область и СЗФО в целом к концу анализируемого периода находились в подготовительной фазе ВМ, а Санкт-Петербург – в фазе развития, на более высокой ступени.

разработками ЦИСИ Института философии РАН.

Наблюдается незначительная позитивная динамика индекса интегрирован-

ной модернизаци СЗФО: в период с 2000 по 2010 г. его значение выросло с 59 до 71, что соотносится с уровнем среднеразвитых стран (интервал от 53 до 83). Наименее благоприятна ситуация в экономической сфере (индекс равен 56%). Однако при детальном рассмотрении региональной модернизации отметим, что наименьшие величины имеет индекс трансляции знаний (от 41 до 59) у всех территорий, за исключением г. Санкт-Петербурга (93). Такой диссонанс получается в результате того, что «северная столица» обладает достаточно большими долями затрат на исследования и разработки в ВРП и числа жителей, подающих заявки на патенты на 1 млн. человек, – это в 6-13 раз превышает показатели соседних областей.

В большинстве субъектов округа (за исключением г. Санкт-Петербурга) основными ограничениями модернизации являются низкий ВРП и невысокий уровень научных исследований и инноваций. В современных условиях крайне важным становится интеллектуальное, исследовательское развитие, сохранение и укрепление элементов инновационной инфраструктуры. При этом значимы не только количественные, но и качественные характеристики.

Например, Вологодской области для достижения уровня региона-лидера — Мурманской области — необходимо увеличить в 5—10 раз показатели НИОКР, а также качественные параметры вологодского интеллектуального присутствия: степень наукоемкости исследовательских институтов, качество фундаментальных и практических разработок [8].

Курс на реализацию новых мегапроектов должен создать мощный импульс и в ведущих отраслях областной промышленности — машиностроении, металлургии, деревопереработке, и в отраслевых научноисследовательских институтах [9]. В основу стратегии развития области должен быть положен принцип наращивания и концентрации научного знания, а затем и производственного потенциала в наиболее перспективных направлениях, формирующих центры социально-экономической эффективности [15].

Темпы и направленность инновационной модернизации в Мурманской области, где промышленный сектор формируют несколько крупных и средних ресурсных корпораций, в значительной степени зависят от внутренней корпоративной политики. Здесь успех инновационной модернизации зависит от совместных действий местной власти и бизнес-сообщества. Меньше всего финансовых ресурсов

для инновационной модернизации в регионах-реципиентах федерального бюджета. Поэтому им следует активно использовать возможности российских и международных институтов развития, чтобы динамично осуществлять процесс интеллектуальной трансформации экономической системы [10]. Необходимо создание такой программы развития северных регионов в эру экономики знания, которая была бы обращена к вызовам инновационного развития, упрощению обмена информацией и знанием внутри СЗФО, между центром и периферией.

Таким образом, у всех субъектов СЗФО (наверняка, и России) существуют схожие барьеры, заключающиеся в низкой инновационной модернизированности. Приоритетом региональной политики должно стать создание условий для всемерной кооперации регионов в развитии территорий, решения общих проблем и реализации совместных проектов [10]. Для успешного формирования инновационной экономики нужна национальная инновационная система институтов, социальных практик, укрепляющая достигнутые результаты и создающая реальные возможности движения по инновационному пути развития. При этом для преодоления главного препятствия, состоящего не в нехватке финансов, а в отсутствии квалифицированных управленцев, необходима совместная работа ученых, предпринимателей, инноваторов и представителей властных структур.

Модернизация — это стратегическая задача не только национального, но и регионального развития. Как показал анализ, ниже общероссийского тренда «стоят» все регионы СЗФО, за исключением Санкт-Петербурга, который один «вытягивает» федеральный округ на позицию выше среднероссийского уровня.

Основными принципами модернизации субъектов СЗФО в ближайшие годы должен стать переход от первичной модернизации к вторичной. Естественно допустить, что для этого даже соседствующим территориям понадобятся разные сроки.

Инновации, знания и человеческие ресурсы должны стать главными источниками энергии, необходимой для непростой конкурентной борьбы регионов за осуществление модернизации [6]. Подчеркнем, что это должна быть модернизация смешанного типа с органичным использованием как передовых зарубежных достижений, так и возможностей собственного научночиновационного потенциала.

Заключение

Оценка модернизации, проведенная для каждого региона и федерального округа России, показала, что:

- модернизационные процессы в регионах протекают очень неравномерно;
- первичная модернизация в большинстве территорий осуществлена на 95–99%;
- стержневые сложности связаны со вторичной и интегрированной модернизацией; их слабые зоны — это процессы экономической и культурно-когнитивной модернизации.

Учитывая базовые факторы пространственного развития России, можно отметить, что перспективы социально-экономических преобразований российских регионов будут иметь инерционный характер. Быстрых изменений в ближайшее десятилетие не произойдет в силу несформированности приоритетов региональной политики. Точками роста останутся те же территории (Москва, Санкт-Петербург, ведущие регионы топливно-энергетического комплекса), которые на данный момент занимают лидирующие позиции в пространственной модернизации России. Сохранится многочисленная группа средних по уровню развития регионов, с возможным незначительным перемещением вниз или вверх. Слаборазвитые субъекты РФ будут отягощать бюджет страны. В общем региональное неравенство будет увеличиваться. Инвестиции в более развитые территории будут обеспечивать модернизационное развитие России в целом. Решение проблем отстающих регионов должно осуществляться не только за счет стимулирующей региональной политики, но и, в первую очередь, за счет социальной политики, направленной на рост человеческого капитала.

Литература

- 1. Inkeles A., Smith D. Becoming Modern Individual Changes in Six Developing societies / Combridge, Mass. Harvard University Press, 1974.
- 2. OECD iLibrary [Электронный ресурс]. Режим доступа: http://www.oecd-ilibrary.org/statistics
- 3. ТОР 500 [Электронный ресурс]. Режим доступа: http://top500.org/
- 4. Глазьев, С.Ю. Возможности и ограничения технико-экономического развития России в условиях структурных изменений в мировой экономике [Электронный ресурс] / С.Ю. Глазьев. Режим доступа: http://spkurdyumov.narod.ru/glaziev.htm
- 5. Глазьев, С.Ю. Теория долгосрочного технико-экономического развития / С.Ю. Глазьев. М.: ВлаДар, 1993.
- 6. Гулин, К.А. К вопросу о социально-экономической модернизации российских регионов / К.А. Гулин // Экономические и социальные перемены: факты, тенденции, прогноз. 2012. №4. С. 42-58.
- 7. Лапин, Н.И. Об опыте стадийного анализа модернизации / Н.И. Лапин // Общественные науки и современность. -2012. -№2. -C. 53-57.

- 8. Ласточкина, М.А. Социокультурные факторы модернизации региона / М.А. Ласточкина // Фундаментальные исследования. -2012. -№3(2). C. 346-351.
- 9. Пилясов, А.Н. Контуры Стратегии развития Арктической зоны России / А.Н. Пилясов // Арктика. Экология и экономика. -2011. № 1. С. 38-47.
- 10. Пилясов, А.Н. Прогнозное развитие регионов российской Арктики: трансформация пространства, внешние связи и уроки зарубежных стратегий / А.Н. Пилясов // Арктика. Экология и экономика. 2011. №2. С. 10-17.
- 11. Семенова, Е.А. Роль государства в стимулировании инноваций / А.Е. Семенова // Проблемы национальной стратегии. -2010.- №4. С. 119-133.
- 12. Указ №579 «О Комиссии при Президенте Российской Федерации по модернизации и технологическому развитию экономики России» от 20 мая 2009 г. [Электронный ресурс]. Режим доступа: http://www.garant.ru/products/ipo/prime/doc/95621/
- 13. Указ №878 «О Совете при Президенте Российской Федерации по модернизации экономики и инновационному развитию России» от 18 июня 2012 г. [Электронный ресурс]. Режим доступа: http://base.garant.ru/70190762/#block_1000
- 14. Хэ Чуаньци. Обзорный доклад о модернизации в мире и Китае (2001 2010) / пер. с англ. под общ. ред. Н.И. Лапина; предисл.: Н.И. Лапин, Г.А. Тосунян. М.: Весь Мир, 2011.
- 15. Шабунова, А.А. Через кризис к модернизации / А.А. Шабунова, М.А. Ласточкина // Философские науки. -2012. -№7. -C. 20-31.